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Abstract. The challenge of demonstrating that the matter produced in heavy ion collisions is a deconfined
quark–gluon plasma, as predicted by lattice QCD calculations, is the challenge of measuring the number of
thermodynamic degrees of freedom ν ∼ ε/T 4 at the time t0 at which the matter comes into approximate
local thermal equilibrium and begins to behave like a hydrodynamic fluid. Data from experiments done
at the Relativistic Heavy Ion Collider have been used to estimate t0 and to put a lower bound on the
energy density ε(t0). However, measuring ν has seemed out of reach, because no current data serve even as
qualitative proxies for the temperature T (t0). We point out that ν may equally appropriately be defined
via ν ∼ s4/ε3, where s is the entropy density, which can be estimated from the measured final state
entropy. This estimate is based on the testable assumption of an isentropic expansion. The observation of
jet quenching has the potential to provide an upper bound on the energy density at early times. Our goal
is to motivate such an analysis by pointing out that it would set a lower bound on ν.

The challenge of detecting the deconfined quark mat-
ter produced for a fleeting instant during a relativistic
heavy ion collision or that hidden deep within the core of
a distant neutron star is in some ways analogous. In the
context of relativistic heavy ion collisions, one must use
measurements of the final state to draw inferences about
the nature of the matter at the much higher tempera-
ture at which it first came into approximate local ther-
mal equilibrium. In the neutron star context, one seeks
to learn about the core of the star using either observ-
ables derived from photons emitted from the surface of
the star or observables like mass, moment of inertia and
radius that are integrals over the entire star. In most re-
spects the two contexts are of course very different, one
experimental and one astrophysical, but in both cases the
relation between observables and answers to fundamen-
tal questions about the phases of QCD matter must rely
upon chains of inference. And, at all steps in the logic
one must ask questions like whether alternative hypothe-
ses have been ruled out and whether inferences are being
drawn in a model-independent fashion.

In the neutron star context, we now understand the
properties of cold dense quark matter at asymptotic den-
sities from first principles: it is a color superconductor in
the color–flavor locked phase [1,2]. More recently, we have
understood the nature of the “second-most-dense” phase
of cold quark matter [3]. This gapless color–flavor locked
form of quark matter may well arise at densities that are
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achievable in the cores of neutron stars. If present, a layer
of gapless color–flavor locked quark matter serves as a “hot
water bottle” for the neutron star: its anomalously large
heat capacity allows it to keep the star warm in its old age.
This result, including the calculation and the context, is
presented in detail in [4]. It is model-independent in that
it is based entirely on the fact that the specific heat of the
gapless CFL phase is proportional to

√
T , whereas that

of any other cold Fermi liquid – whether quark matter or
nuclear matter, with or without meson condensates – is
at most of order T . (The temperature T is a small pa-
rameter, in that neutron stars have temperatures that are
many orders of magnitude lower than any energy scales
that characterize quark or nuclear matter.) The unusual
T -dependence of the gapless CFL quark matter specific
heat is in turn is a consequence of an intrinsic, and un-
usual, feature of the dispersion relations of gapless CFL
quasiparticles, originating in the way that electric neutral-
ity is achieved in this phase of matter and thus not from
any tuning of parameters. Present limits on the tempera-
tures of neutron stars with ages of order tens of millions
of years are close to detecting, or ruling out, the presence
of quark matter in the gapless CFL phase [4].

We turn now to the question of detecting the presence
of hot deconfined quark matter in heavy ion collisions [5].
Measurements of the final state produced in heavy ion
collisions at

√
sNN = 130 and 200 GeV at the Relativistic

Heavy Ion Collider (RHIC) in Brookhaven have provided
strong evidence that the matter created in these reactions
is rapidly thermalized and has many properties expected
from a strongly coupled quark–gluon plasma [6]. What is
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lacking, however, is direct evidence that could be linked
to the prevalence of unconfined colored excitations, which
are thought to be the defining feature of this novel state
of matter.

At present, the best evidence for deconfinement of
quarks may be that derived from the phenomenological
success of valence quark recombination models [7], which
are based on the assumption of the existence of a ther-
malized phase of unconfined “constituent quarks” imme-
diately prior to hadronization. In particular, the quark re-
combination models explain the different saturation levels
and thresholds for the elliptic flow of different hadrons in
terms of a universal elliptic flow pattern at the valence
quark level. A serious limitation of this evidence is that it
addresses physics near the quark–hadron transition, which
is inherently non-perturbative and thus not amenable to
controlled theoretical approximations. It would be desir-
able to obtain evidence for the liberation of colored de-
grees of freedom in the matter created at RHIC which
relates to thermalized matter present during an earlier
stage of the reaction, when the temperature is higher, and
to observables that allow for a more controlled theoretical
description.

In QCD with quark masses as given in nature, there
is no difference in symmetry between an equilibrated gas
of hadrons and a quark–gluon plasma, implying that the
transition between these two regimes of strongly interact-
ing matter may be a continuous, albeit possibly rapid,
crossover [8]. Indeed, this is what is predicted by ab ini-
tio calculations of QCD thermodynamics done using the
methods of lattice gauge theory [9]. Hence, an experi-
mental demonstration of deconfinement cannot be seen
as the answer to some “yes/no” question, but must in-
stead involve the measurement of some physical property
of the matter created in heavy ion collisions that can also
be predicted by controlled theoretical calculations, and
which takes on quite different values below and above
the crossover between a hadron gas and a quark–gluon
plasma.

Because QCD is an asymptotically free theory, there
are many quantities whose calculation is controlled at tem-
peratures far above the crossover, where the effective QCD
coupling αs(T ) becomes small. However, we do not expect
that collisions at RHIC can create matter in this asymp-
totic regime. This means that in looking for quantities
whose theoretical calculation is under control, we must
ask what quantities can be calculated by rigorous numer-
ical methods. Lattice calculations of non-thermodynamic
quantities, like spectral functions [10] and viscosities [11],
are still in their infancy and are presently restricted to
QCD in the quenched approximation. In contrast, lattice
calculations of QCD thermodynamics have reached matu-
rity because they can be formulated conveniently in Eu-
clidean quantum field theory, the natural arena for lattice
QCD. Lattice simulations of the QCD equation of state
including dynamical quarks of various numbers of fla-
vors are available, which permit model-independent con-
clusions [9].

In QCD thermodynamics, there is one observable
whose value changes by more than an order of magni-
tude across the crossover transition from hadron gas to
quark–gluon plasma, namely the effective number of ther-
modynamic degrees of freedom ν(T ). A common definition
of ν(T ) is via the relation

ε(T ) =
π2

30
ν(T ) T 4 , (1)

where ε and T are the energy density and temperature,
respectively. For an ideal gas of massless, non-interacting
constituents, ν counts the number of bosonic degrees of
freedom plus the number of fermionic degrees of freedom
weighted by 7/8. Equation (1) makes the measurement of
ν in heavy ion collisions seem a remote possibility, because
there is nothing in the current suite of data from RHIC
that is thought to serve as a proxy for the temperature
at early times. The temperature at freezeout, when the
matter is again hadronic, is well determined from many
measurements of the hadronic final state. A measurement
of the temperatures of the quark–gluon plasma presumed
to be present at early times is one of the goals of studies of
direct photon and dilepton emission in heavy ion collisions
but, so far, no evidence for thermal photon or dilepton
radiation has been observed at RHIC. Even if they will
be observed eventually, thermal photons will only yield a
weighted time-average of the temperature, which may not
be sufficient to determine the function ν(T ).

In [5], we make the simple observation that ν can
equally well be defined:

s(T ) =
2π2

45
ν(T ) T 3 , (2)

and hence via

ν(T ) =
1215
128π2

s4

ε3 = 0.96
s4

ε3 . (3)

For an ideal gas of massless degrees of freedom, the ex-
pressions (1), (2) and (3) are equivalent definitions of ν.
We shall take (3) as our definition, because in so doing
we realize that ν(T ) can be measured without measuring
T itself. An ideal gas of ultrarelativistic pions has ν = 3,
whereas an ideal gas of non-interacting gluons and three
flavors of massless quarks has ν = 47.5.

Lattice QCD calculations show that ν increases by
more than a factor of ten over a narrow range of tem-
peratures centered at a crossover temperature Tc = 170 ±
10 MeV [9]. This rapid increase in the number of degrees
of freedom is the direct consequence of deconfinement at
high temperatures in QCD and, if we limit ourselves to
thermodynamic observables, the measurement of ν is the
only possible route to an experimental demonstration of
deconfinement.

QCD does not describe an ideal gas of non-interacting
quarks and gluons, except at infinite temperatures. And
indeed, there is growing evidence from the RHIC exper-
iments that the matter they are creating is strongly in-
teracting, thermalizing rapidly, flowing like a liquid, and
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Fig. 1. The effective number of degrees of freedom of a
hadronic resonance gas, using the three definitions of ν pro-
vided by (1)–(3): (1) long-dashed line (blue), (2) short-dashed
line (green), and (3) solid line (red) [5]. The solid curve moves
by about 5% depending on whether we use all established res-
onances in the particle data book or only those commonly in-
cluded in the chemical freezeout analysis. This can be consid-
ered an estimate of the theoretical uncertainty in the curve

opaque to energetic partons produced within it [6]. In the
case of strongly interacting matter, the different defini-
tions of ν provided by (1), (2) and (3) are not equivalent,
and furthermore ν cannot be considered as a count of well-
defined degrees of freedom. Indeed, in an ideal liquid there
are no well-defined long-lived quasiparticles. Nevertheless,
upon choosing one definition – and we shall choose (3) –
ν is reliably calculable on the lattice, potentially measur-
able as we shall discuss [5], and remains a valid measure
of deconfinement.

Lattice QCD calculations indicate that throughout the
temperature range 2Tc < T < 5Tc, ν(T ) is between 70%
and 80% of that for an ideal quark–gluon plasma [9],
meaning that 33 < ν < 38. At lower temperatures, closer
to the crossover, the value of ν extracted from lattice QCD
calculations is more significantly different for different def-
initions of ν, because just above the crossover the pressure
deviates more from its ideal gas value than the energy den-
sity does. At T = 1.5 Tc, for example, with the definition
(1) lattice calculations [9] yield ν ≈ 37, whereas with our
definition (3) they yield ν ≈ 27 [5].

There is an additional benefit to defining ν via (3) as
we do [5], over and above making the quantity observable
in practice. In order to be convincing, a future experimen-
tal measurement of ν that agreed with what lattice QCD
predicts for the quark–gluon plasma would need to dis-
criminate between this prediction and that of a hadronic
resonance gas with T ≤ Tc. We see from Fig. 1 that, with
our definition of ν, this requires excluding ν ≈ 10. The
three different definitions of ν all agree for a gas of non-
interacting massless particles, but massive particles – as in

a resonance gas – contribute somewhat less to s/T 3 than
they do to ε/T 4, and hence less still to s4/ε3. This makes
our definition of ν advantageous.

Before turning to the challenges associated with mea-
suring s and ε, we note that the value of ν defined from
them via (3) can only be compared to QCD thermody-
namics if there is independent evidence that the matter
under study is in (approximate) local thermal equilib-
rium. At RHIC, such evidence is believed to be provided
by the agreement of the elliptic flow measured in non-
central collisions with hydrodynamic model predictions
[6]. Such predictions are based on the assumption that the
matter behaves like a fluid in local thermal equilibrium,
with arbitrarily short mean free paths and correspond-
ingly strong interactions. The fact that the data show as
much elliptic flow as predicted indicates that this assump-
tion must already be valid soon after the collision, early
enough that the azimuthal spatial anisotropy due to the
non-zero impact parameter has not had time to be signif-
icantly reduced via free streaming of weakly interacting
quasiparticles. Quantitatively, it is estimated that local
thermal equilibrium and the onset of hydrodynamic be-
havior must occur by a time t0 ∼ 0.6–1.0 fm/c [12].1 We
shall take t0 = 1.0 fm/c in the following. In the remainder
of this paper, we shall discuss how s(t0) and ε(t0) may be
estimated, using present and near-future data [5].

The estimate of s(t0) relies on the fact that the entropy
of an ideal fluid is conserved during its hydrodynamical
evolution. The value of s(t0) can therefore be deduced
from the value of dS/dy at chemical freezeout, upon as-
suming that the fluid remains in local thermal equilibrium
between the time t0 when this condition is established and
the time at which chemical freezeout occurs. Note that we
shall need to know the volume of the system at time t0,
which is early enough that little transverse expansion has
taken place making this easy to estimate, but we shall not
need to know the volume of the system at freezeout. In-
deed, we do not need to know anything about the system
at freezeout except its entropy. In an isentropic expansion,
it is entropy that is conserved, regardless of how entropy
density evolves.

There are, in principle, two ways of estimating dS/dy.
One approach uses an analysis of the composition of
the fireball at chemical freezeout to derive the entropy
per hadron, which can then be used to relate the mea-
sured charge particle multiplicity dNch/dy to the entropy
dS/dy, assuming full thermal phase space occupation at
the freezeout time [5]. The other approach [14] uses the
measured multiplicities of stable hadrons together with
experimental data on Hanbury–Brown–Twiss (HBT) two-
particle interferometry to estimate the full phase space
distributions fi(r,p) at kinetic freezeout, and from them

1 Recent work suggests that this rapid approach to local ther-
mal equilibrium may occur via plasma instabilities, not colli-
sions [13]. We caution that if thermal but not chemical equi-
librium has been achieved at t0, then ν(t0) may be lower than
the value calculated in lattice QCD.
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the entropy

S =
∑

i

∫
d3rd3p

(2π)3
[−fi ln fi ± (1 ± fi) ln(1 ± fi)] , (4)

where the upper (lower) sign holds for bosons (fermions).
We begin with a review of the results of the kinetic

freezeout analysis. Pal and Pratt [14] have used final state
multiplicities and “radius” parameters deduced from a
HBT correlation analysis to determine dS/dy in data from√

s = 130 AGeV Au+Au collisions. For collisions in a 11%
centrality window, Pal and Pratt find dS/dy ≈ 4450 with
an estimated systematic error of ±400. Two effects may
affect the reliability of this estimate. First, the conven-
tional extraction of HBT radius parameters is based on
the assumption that hadrons originate from a source that
is Gaussian in both position and momentum space. This
is not a good assumption for a rapidly expanding source,
and the measured HBT radius parameters do not actually
serve as estimates of the radii of the fireball at freezeout.
Hence, a more direct measurement of the phase space dis-
tributions themselves, without introducing a parametriza-
tion in terms of “radii”, would be of value. And, second,
the entropy of the hadronic gas must increase as it cools af-
ter chemical freezeout but before kinetic freezeout. As the
mean free path becomes larger and eventually approaches
the size of the system at kinetic freezeout, the viscosity
of the hadron gas grows, ideal hydrodynamics ceases to
be a good approximation, and entropy is produced. Fur-
thermore, after chemical freezeout more resonances decay
than are produced, again increasing the entropy. Hence,
the entropy at chemical freezeout, which is what is of in-
terest to us, must be smaller than that estimated at kinetic
freezeout.

Next, we consider the analysis based on the inferred
chemical freezeout multiplicities of hadrons, which has
the potential to extract the entropy at chemical freeze-
out directly [5]. The ratios of hadron multiplicities in
RHIC collisions with

√
s = 200 AGeV are quite well de-

scribed by the assumption that chemical freezeout occurs
at Tch = 170 ± 10 MeV from an equilibrated hadron gas
at this temperature [15]. An ideal gas of all established
meson and baryon resonances at T = 170 MeV has an
entropy of about 7.25 per hadron [16,17], which can be
compared to the value of 3.6 for an ideal gas of mass-
less pions. After all the resonances decay the multiplicity
of charged hadrons in the final state is 1.04 per hadron
in the equilibrated hadron gas [16]. In the 6% most cen-
tral collisions with

√
s = 200 AGeV, the multiplicity of

charged particles in the final state is dNch/dη = 665 ± 26
at mid-rapidity [18], corresponding to a dNch/dy that is
about 10% larger [19]. Putting the pieces together, we
estimate dS/dy = (665 × 1.1 × 7.25)/1.04 ≈ 5100 at
chemical freezeout at mid-rapidity in RHIC collisions with√

s = 200 AGeV. There is a 4% uncertainty in this esti-
mate coming from that in the experimental measurement
of dNch/dη. The largest theoretical uncertainty is that in
the factor S/N = 7.25. Changing the chemical freezeout
temperature by ±10 MeV changes S/N by ±3%. To get a
sense of the other uncertainties in S/N , we recalculated it

using abundances obtained including the widths of states,
and found that S/N increased to 7.58. There are still fur-
ther sources of theoretical uncertainty that are harder to
estimate like, for example, that due to our neglect of res-
onances not found in the particle data book. We do not
think this is a large effect, because reducing the number
of resonances that we include does not have a large ef-
fect. We estimate S/N = 7.25 ± 6%, and expect that a
more systematic analysis could reduce this uncertainty by
a factor of two. Adding the theoretical and experimental
uncertainties in quadrature and rounding upwards yields
dS/dy = 5100 ± 400 [5].

We can also compare our estimate of dS/dy at chemi-
cal freezeout to that obtained by Pal and Pratt at kinetic
freezeout. Applying our argument to the 11% most cen-
tral collisions with

√
s = 130 AGeV, for which dNch/dη =

526 ± 20 [18], yields the estimate dS/dy = 4035 ± 300. As
expected, the central value of this estimate is below that
obtained by Pal and Pratt, but the difference is within er-
ror bars. This indicates that the entropy release between
chemical and kinetic freezeout is not dramatic.

To summarize, the best estimates available at present
suggest that dS/dy ≈ 5100 ± 400 at chemical freezeout
at mid-rapidity in central RHIC collisions with

√
s =

200 AGeV. It seems to us that a more careful theoreti-
cal analysis can reduce the theoretical uncertainty by a
factor of two, which would yield a measurement of dS/dy
with 5% errors.

To the extent that the expansion between t0 = 1 fm/c
and chemical freezeout is isentropic, the argument first
proposed by Bjorken [20] can be used to turn dS/dy into
a lower bound on s(t0). The PHOBOS version of this
argument [19] can be phrased as follows. The charged
particle multiplicity is reasonably independent of the ra-
pidity y within the range |y| < 1, and all this entropy
(S = 2dS/dy ≈ 10200±800) must have come from within
a volume of size 2t0πR2 at time t0. Taking R = 7 fm, this
yields s(t0) ≥ 33±3 fm−3 [5]. The entropy density at t0 is
somewhat greater than this, because of the contribution
from particles outside |y| < 1.

In order to obtain a lower bound on ν(t0) using (3), it is
important to have a lower bound on s(t0), as the Bjorken
argument provides upon assuming isentropic expansion.
It is crucial, however, to test this assumption. That is, it
is crucial to rule out a significant increase of the entropy
between equilibration at time t0 and chemical freezeout.
Entropy production during the hydrodynamic expansion
requires some specific mechanism such as a strong first or-
der phase transition which can drive the matter away from
local thermal equilibrium. Lattice QCD calculations indi-
cate that the transition is a crossover, with hadronization
occurring continuously, but it would be desirable to have
experimental confirmation of the absence of a strong first
order phase transition, in order to complete the justifica-
tion of our use of dS/dy at chemical freezeout to obtain a
lower bound on s(t0). A strong first order phase transition
would lead to large (and possibly non-Gaussian) event-by-
event fluctuations at low pT [21]. There is no evidence for
such fluctuations in current data [22], but given the im-
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portance of this issue a more stringent investigation of
low-pT event-by-event fluctuations is called for, looking at
the fluctuations of several observables and focusing on pT
significantly smaller than the mean.

Just as it is important to have a lower bound on s(t0),
if we wish to obtain a lower bound on ν we need an up-
per bound on ε(t0). The analogous “Bjorken argument”,
applied to dET/dy (where ET is the total transverse en-
ergy of the hadrons in the final state) only yields a lower
bound on ε(t0) because the longitudinal expansion subse-
quent to t0 reduces dET/dy. For this reason, we cannot
use dET/dy for our purposes. Putting this another way,
Bjorken arguments applied to dN/dy and dET/dy yield
lower bounds on both s(t0) and ε(t0), and so by themselves
these arguments give no constraint on ν.

The analysis of jet quenching data has the potential to
yield an upper bound on the energy density at early times
[5], as we now discuss. High energy partons traversing
strongly interacting matter lose energy mainly by gluon
radiation after interactions with colored constituents of
the medium. The theory of this mechanism is well de-
veloped within the framework of perturbative QCD [23–
28]. In the multiple soft scattering limit, the effect of the
medium is encoded in the parameter

q̂ = ρ

∫
q2dq2(dσ/dq2) , (5)

where ρ is the density of scattering centers in the medium,
q2 denotes the momentum transfer in scattering, and
dσ/dq2 is the differential cross section for scattering of
the hard parton on a single center. Coherence effects sup-
press the emission of gluons with energies above ωc =
q̂L2/2, where L denotes the length of material traversed.
The mean energy lost by the parton is given by ∆E ≈
(3αsCR/π)ωc, where CR is the Casimir operator for the
color representation of the parton. Similar results are ob-
tained in the opposite (low opacity) limit, when the in-
teraction with the medium is dominated by a single or
few scatterings [27]. In these analyses, the properties of
the matter being probed arise only in the transport coef-
ficient q̂. In this sense, jet quenching can be thought of as
“measuring q̂.”

The relationship between q̂ and the energy density ε
has not been determined in general, but it is known for
the limiting cases of cold nuclear matter [25], an ideal pion
gas, and an ideal weakly interacting quark–gluon plasma
[29]. When a high energy parton penetrates strongly in-
teracting matter, it resolves the partonic constituents of
the medium. In the case of cold nuclear matter, it mainly
interacts with the gluon component of the nucleons, and
the parameter q̂ can be expressed in terms of the gluon
distribution in the nucleon [25]. For a medium such as a
weakly interacting quark–gluon plasma, in which all par-
tons are deconfined, each quark and gluon contributes to
the density of scatterers independently, and q̂ is directly
given by (5) in terms of the gluon density and perturba-
tively screened parton–parton cross section. The resulting
energy loss in a thermal quark–gluon plasma has been
calculated by Baier as a function of the energy density of

the plasma [29]. Remarkably, when the energy loss coeffi-
cient is calculated for a thermal gas of pions, one finds the
same value of q̂ as for a thermal quark–gluon plasma with
the same energy density. With the benefit of hindsight,
this is not entirely surprising, although the precision of
the agreement may be coincidental. About half of the mo-
mentum of a fast moving hadron is carried by gluons, and
roughly half of the energy density of a weakly interacting
quark–gluon plasma is contained in gluons. Normalized to
the energy density of the medium, a fast moving parton
can therefore be expected to encounter roughly the same
number of gluons on which it can scatter.

It is presumably naive to think that a measurement of
q̂ is a measurement of the energy density ε, as the compar-
ison between Baier’s results for energy loss in a weakly in-
teracting pion gas and in a weakly interacting quark–gluon
plasma would suggest. Certainly, the relationship between
the energy loss of a hard parton traversing a medium and
the energy density of the medium requires further eluci-
dation and generalization. The perturbative expression for
the radiative energy loss of an energetic parton, which is
only known to leading order in the strong coupling αs, may
get substantial corrections at higher order. A calculation
of next-to-leading order corrections to the energy loss in
perturbative QCD would be desirable. Although the en-
ergy of the penetrating parton provides a large scale, the
momentum transfer of the scattering in the medium pro-
vides a second, much lower energy scale, which could enter
into the NLO corrections. Also, the quantity q̂ which pro-
vides the link between the observable ∆E and the energy
density ε is defined only in the context of the perturba-
tive analysis. Since ε itself is non-perturbatively well de-
fined, it would ultimately be desirable to understand the
relation between parton energy loss observables and ε di-
rectly, possibly involving other non-perturbatively defined
properties of the medium being probed by the hard par-
ton. Keeping these caveats in mind, we nevertheless expect
that the qualitative lessons encoded in Baier’s results will
survive in a more rigorous treatment [5].

Jet quenching by itself can never provide a measure
of ν. It cannot differentiate between a weakly interacting
quark–gluon plasma and a system whose gluon content is
the same, but which has much less entropy density be-
cause the gluons are bound within hadrons and hence do
not directly contribute to the entropy. In a hadron gas,
the entropy is (roughly) a count of the hadrons, which
are the thermodynamically independent degrees of free-
dom, whereas a hard parton “sees” the gluons within each
hadron. A weakly interacting quark–gluon plasma and a
hypothetical weakly interacting pion gas with the same en-
ergy density are equally effective at quenching jets, accord-
ing to Baier’s perturbative analysis, but the pion gas has a
much lower entropy density and hence a lower ν. Turning
it around, if we imagine a hadron gas and a quark–gluon
plasma with the same entropy density, the quark–gluon
plasma has the smaller energy density, the smaller den-
sity of gluonic scatterers (only one per entropically active
degree of freedom), and hence the smaller energy loss by a
factor that scales like ν1/3. The details of this calculation
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will differ depending on the precise nature of the compo-
sition of the medium, but the principle is general [5]: Any
hadronic medium will contain several gluons per hadron,
but only the entire hadrons will contribute to the entropy.
For a deconfined medium, on the other hand, each gluon
contributes to the entropy individually, implying a smaller
number of gluons (per unit of entropy) capable of scatter-
ing an energetic parton.2

Given a lower bound on s(t0), in order to obtain a lower
bound on ν, and hence perhaps a demonstration of decon-
finement, we will need to use jet quenching data to obtain
an upper bound on ε(t0) [5]. Further theoretical work is
required before this can be attempted quantitatively. Even
if the relation between jet quenching data and energy den-
sity were in hand, current data may not be sufficient to
provide an upper bound. The fact that the observed jet
quenching in the most central collisions is quite large (the
suppression ratio RAA � 1) means that it may be diffi-
cult to derive an upper bound on q̂ from these data [32].
The observed strong suppression implies that the observed
hadrons are the leading partons from jets originating near
the surface of the matter [6], as is also indicated by the ab-
sence (within current error bars) of any high-pT hadrons
from the away-side jet in the most central collisions [33].
Indeed, the currently ongoing careful study of the material
recoiling against a jet originating from near the surface of
the matter, for example via dihadron distributions, will
provide us with data on new jet quenching observables
and could teach us more about the matter produced in
central collisions. However, since an upper bound on the
energy density must take the form of a statement that if
ε were larger more suppression would have been seen, jet
quenching data from non-central collisions may be a more
powerful source of information. Indeed, the away-side jet
does not fully disappear in non-central collisions, espe-
cially when the jets only have to fight their way through
the hot matter in the narrow direction [33], giving hope
that a quantitative upper limit for the value of q̂ may not
be far away. Data at higher pT and with higher statistics

2 As an aside, we should note that one proposed way of un-
derstanding the lattice QCD result that ν in the quark–gluon
plasma is somewhat less than that for an ideal quark–gluon
plasma invokes the possibility that, in the energy density range
relevant to the RHIC experiments, matter in the deconfined
phase may contain colored bound states of quarks and gluons
[30]. This reduces the entropy density somewhat without re-
ducing the density of gluonic scatterers in the medium. This
is another illustration of our logic, but it is not directly rel-
evant to the strategy for measuring ν that we propose. Any
bound on ν extracted from data can be compared directly
to lattice QCD calculations, regardless of the mechanism by
which the strong interactions create the deviation of ν from its
ideal quark–gluon plasma value. Note also that colored bound
state formation among quarks and gluons introduces a new
contribution to the energy loss, that coming from ionization of
the bound states [31]. Neglecting this contribution in a future
analysis of jet quenching would mean that the inferred energy
density is greater than the true energy density, and thus would
not interfere with the goal of obtaining an upper bound on the
energy density.

are required and should come from the Run-4 data set
now being analyzed.

Although the above paragraph is our true conclu-
sion, we would be remiss to end without attempting to
“plug in numbers just for fun”, even absent a reliable up-
per bound on ε(t0). By applying the Bjorken argument
to dET/dy, both PHOBOS and PHENIX estimate that
ε(1 fm/c) > 5 GeV/fm−3 [6]. This lower bound on the en-
ergy density is of considerable interest in and of itself,
even though by itself it cannot be used to constrain ν.
Indeed, if we take the lattice QCD calculation of ν(T ) as
a given, the experimental lower bound on ε tells us that
at t = 1 fm/c the matter produced at RHIC is a quark–
gluon plasma with a temperature T > 1.4 Tc, well above
the crossover. In other words, using (1), a lower bound on
ε, and the lattice calculation of ν, we obtain a lower bound
on T and a “demonstration” of deconfinement, albeit one
that is unsatisfying because it uses the lattice calculation
of ν rather than testing it. In order to measure ν and (pre-
sumably) demonstrate deconfinement, what is required is
a lower bound on s(t0) and an upper bound on ε(t0). If we
adopt the conclusion from above that s(t0) > 33 ± 3 fm−3

and, absent a reliable upper bound, suppose that ε(1 fm/c)
is given by 5, 7 or 9 GeV/fm−3, we would conclude that
ν > 71±22, ν > 26±8 or ν > 12±4, respectively [5]. A 5%
determination of s(t0) would reduce these error bars sig-
nificantly, which motivates the theoretical effort needed to
accomplish this goal. Another direction in which theoreti-
cal effort is needed is the modelling of the consequences of
the variation of s and ε across the transverse extent of the
collision region, something we have not considered here.
A stringent experimental investigation of low-pT event-
by-event fluctuations is also required, in order to augment
current theoretical evidence with experimental evidence
against a strong first order phase transition, whose atten-
dant entropy production would complicate the extraction
of ν that we propose. And, most important, these num-
bers make very clear the importance of further analysis
of jet quenching theory and data with the goal of setting
a reliable upper bound on ε(t0). If there were experimen-
tal evidence that ε(1 fm/c) < 7 GeV/fm−3, this would be
evidence for deconfinement [5].

Looking further ahead, if RHIC data can provide in-
teresting limits on the value of ν, data from heavy ion
collisions at the LHC should do even better. And, QCD
predicts that if ν is above the crossover at RHIC, its value
will not increase significantly at the LHC. It is a greater
challenge to devise a way of measuring ν at lower energy
densities using lower energy heavy ion collisions, where jet
quenching is not observable.
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